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 STATISTICAL ALGORITHMS 215

 the two processes (see, for example, Brillinger, 1972).
 The major problem usually encountered in calculating such estimates is that the amount of

 computing time required is excessive, especially for processes containing large numbers of
 events. This is because the number of operations involved in calculating the sums of sines and
 cosines at all frequencies for processj is proportional to NJ. One well-known way to reduce the
 required computing time is to split the period of observation into several sections, compute
 estimates for each section and obtain smoothed estimates by averaging over the sections (see, for
 example, Lewis, 1970). If k sections are used, the number of operations for process j is then
 proportional to NJ/k.

 This can give large savings in computation time and is the procedure implemented in
 BIVCNT and SPLIT; Subroutine SPLIT takes the event times in a univariate point process,
 divides the total period of observation into nonoverlapping sections of equal length and
 computes the event times relative to the sections. Subroutine BI VCNT calls SPLIT for both
 marginal processes in a bivariate point process and uses the resulting event times to compute
 smoothed estimates of the auto-spectra, coherence and phase spectra.

 More precisely, suppose that k sections are used, that the event times relative to the sections
 in processj are tj(r), (j = 1, 2; r = 1, 2,..., N), that the index number of the last event in section 1
 of process j is bj(l) and that nj(l) = bj(l) - bj(l - 1), i.e. nj(l) is the number of events in section I of
 process j (j = 1, 2; 1 =19 29 ..., k).

 Writing Ctp = 2tpk/T, let
 b1(l)

 Cjl(coD) = E cos (pt1j(r)),
 r=bj(l- 1)+ 1

 bA(l)

 S~1Qio~) = . sin (wp t'j(r)), r=bj(l- 1)+ 1

 k

 A(cwp) = E {C11(wt)P) C21(w)p) + S11(wt)p) S21(w)A)}/(n1(l) n2(l))4

 and

 k

 B(c9p) = Y- {C2#(wP) S11(w9) - C1#(wp) S21(wa)}/(n1(l) n2(l))-.

 By calling the subroutine SCOUNT for each section, BIVCNT computes the auto-spectral
 estimates

 A( ) 2 k C2 j(w ) + S2j#(coP) j = 1, 2
 nj(l)

 the squared coherence estimate

 K12 (O))= 4(A2(w,) + B2(wOp))/(k2 g1()pV)g2((Op))

 and the phase estimate

 i12(COP) = arctan (B(w0P)/A(woP)),

 each for p = 1, 2, ..., NF.

 STRUCTURE

 SUBROUTINE BIVCNT(N1, N2, TZERO, NSECT, T1, T2, NF, TTEMP, SPC1, SPC2, C1,
 S1, C2, S2, NT1, NT2, NN1, NN2, SPEC1, SPEC2, COHERE, PHASE, FREQ, IFAULT)

 Formal parameters

 Ni Integer input: the number of events in process 1
 N2 Integer input: the number of events in process 2
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 216 APPLIED STATISTICS

 TZERO Real input: the length of the period of observation
 NSECT Integer input: the number of sections used
 TI Real array (NI) input: the event times in process 1

 output: the event times in process 1 relative to
 the sections

 T2 Real array (N2) input: the event times in process 2
 output: the event times in process 2 relative to

 the sections
 NF Integer input: the number of frequencies at which the

 estimates are computed
 TTEMP Real array (NF) workspace: used in the calls to SPLITand SCO UNT
 SPCi Real array (NF) workspace: used in the calls to SCOUNT
 SPC2 Real array (NF) workspace: used in the calls to SCOUNT
 Ci Real array (NF) workspace: used in the calls to SCOUNT
 Si Real array (NF) workspace: used in the calls to SCOUNT
 C2 Real array (NF) workspace: used in the calls to SCOUNT
 S2 Real array (NF) workspace: used in the calls to SCOUNT
 NTI Integer array (NSECT) output: the index numbers of the last event in

 each section of process 1
 NT2 Integer array (NSECT) output: the index numbers of the last event in

 each section of process 2
 NNI Integer array (NSECT) output: the numbers of events in each section of

 process I
 NN2 Integer array (NSECT) output: the numbers of events in each section of

 process 2
 SPECI Real array (NF) output: the smoothed estimates of the auto-

 spectrum of process I
 SPEC2 Real array (NF) output: the smoothed estimates of the auto-

 spectrum of process 2
 COHERE Real array (NF) output: the smoothed estimates of the squared

 coherence spectrum
 PHASE Real array (NF) output: the smoothed estimates of the phase

 spectrum
 FREQ Real array (NF) output: the frequencies at which the estimates

 are computed
 IFAULT Integer output: a fault indicator, equal to:

 7 if TZERO < 0;
 8 ifNiorN2<O;
 9 if TI (NI) or T2 (N2)> TZERO;

 10 if NSECTs<O;
 11 if NF<NSECT;
 12 if the number of events in any section

 of either process is greater than NF;
 values between 1 and 6 can result from
 errors in SCOUNT;
 0 otherwise

 SUBROUTINE SPLIT(NSECT, NEVENT, TZERO, T, NT, TSECT, IFAULT)
 Formal parameters

 NSECT Integer input: the number of sections used
 NEVENT Integer input: the total number of events
 TZERO Real input: the length of the period of observation
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 STATISTICAL ALGORITHMS 217

 T Real array (NEVENT) input: the event occurrence times
 output: the event times relative to the sections

 NT Integer array (NSECT) output : the index numbers of the last event in
 each section

 TSECT Real array (NSECT) output: the times at which the sections end
 IFAULT Integer output: a fault indicator, equal to:

 13 if NSECTS 1 or > NE VENT;
 14 if TZERO,<0;
 15 if T(NEVENT) > TZERO;
 16 if any section contains no events

 Auxiliary algorithm

 BIVCNTuses the subroutine SCOUNTof algorithm AS 150 (Charnock, 1980).

 TIME AND ACCURACY

 As already observed, the time required increases in proportion to the square of the numbers
 of events in the two processes but is inversely proportional to the number of sections used. It will
 also depend on the value chosen for the constant NRECUR in the auxiliary algorithm
 SCOUNT Table 1 gives timings (on a DEC-10 computer) for BIVCNTwith NRECUR = 100
 when both processes contain the same number of events. With large values (around 100) of
 NREC UR the phase estimates at frequencies with very low coherency values have been found to
 be accurate to only one significant figure. However, this is not a serious problem because the
 phase estimates are of little use when the coherency is very low.

 TABLE 1

 Timings (in seconds) for BIVCNTon a DEC-10

 Number of events in each process

 Number of sections 208 1000 2000 4000

 1 6 35 125 43 494 86
 5 1 61 26 17 100 39 396 24
 10 1 44 13 72 5166 199 85
 20 748 2689 101 13

 RESTRICTION

 The size of the array TTEMP has been set equal to NF. This is a fairly arbitrary value: in
 fact, TTEMP must be large enough to store the event times section by section for each process.
 Since the user will normally set NF to a value somewhat greater than max (N1, N2)/NSECT. i.e.
 the mean number of events per section in the process with the larger number of events, this value
 for the size of TTEMP should be large enough for most analyses. If, however, the error
 condition IFAULT= 12 occurs then TTEMP should be DIMENSIONed to a larger size than
 NF.

 ACKNOWLEDGEMENTS

 I am grateful to the editor and referee for several suggestions which helped to improve the
 quality of the coding.
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 SUBRt3UTINE BIVCNT(Ni, N2, TZERO, NSECT, TI, T2, NF, TTEIP, SPCi,

 * SPC2, Cl, Si, C2, S2, NTI, NT2, NNI, NN2, SPECi, SPEC2, COHERE,
 * PHASE, FREQ, IFAULT)

 C

 C ALGORITHM AS 151 APPL. STATIST. (198o) VOL.29, NO.2
 C

 C CALCUIATES SMOOrHED SPECTRAL ESTIMATES FOR A BIVARIATE

 C POINT PROCESS BY SPLITTING THE PERIOD OF CSERVATICN

 C INTO NONOVERIAPPING SECTIONS OF EQUAL LENTH
 C

 DIMENSION Ti(Ni), T2(N2), FREQ(NF), SPECI(NF), SPEC2(NF),

 * COHERE(NF), P1IASE(NF), Ci(NF), Si(NF), C2(NF), S2(NF),
 * TTEMP(NF), SPCI(NF), SPC2(NF)
 INTEGER NTI(NSECT), NT2(NSECT), NNI(NSECT), NN2(NSECT)

 C

 C TEST FOR PARAMErER ERRORS

 C

 IF (TZERO . LE. 0.0) Gal'O 9
 IF (Ni . LE. 0 . OR. N2 . LE. 0) GCrO 10
 IF (Ti(Ni) .GT. TZERO .OR. T2(N2) .GT. TZERO) GrO 11
 IF (NSECT .LE. 0) GOrO 12

 IF (NF *LT. NSECT) GarO 13

 IFAULT = 0

 C

 C INITIALISE ARRAYS FOR ACCUMULATING SPECTRAL ESTIMATES
 C

 DO I I = It NF
 SPECi(I) = 0.0

 SPEC2(I) = 0.0

 COHERE(I) = 0.0

 PHASE(I) = 0.0

 I CONTINUE
 C

 C UNLESS NSECT = I, CALL SPLIT TO SECTION THE PERIOD OF

 C OBSERVATION AND CALCULATE THE EVENT TIMES RELATIVE TO
 C THE SECTION ORIGINS
 C

 NTi(i) = Ni

 NT2(i) = N2
 NNi(i) = Ni
 NN2(1) = N2
 IF (NSECT *EQ. 1) GOTO 3

 CALL SPLIT(NSECT, Ni, TZEROO, Ti, NTI, TTEMP, IFAULT)
 IF (IFAULT *NE. 0) RETURN
 CALL SPLIT(NSECT, N2, TZERO, T2, NT2, TTEMP, IFAULT)
 IF (rIFAULT NE. 0) RETURN

 C

 C CALCULATE NO. OF EVENTS IN EACH SECTION OF BCrH SERIES
 C

 NNi(i) = NTi(l)

 NN2(1) = NT2(1)
 C

 C TEST WHETHER THE WORKSPACE ARRAY TTEMP(.) IS LARGE ENOUGH
 C TO STORE TH{E EVENT TIMES IN SECTION i,OF EACH SERIES
 C

 IF (NNi(i) .GT. NF .OR. NN2(1) .GT. NF) GOO 14
 DO 2 I = 2, NSECT

 NNI(I) = NTi(IM - NTI(I - 1)
 NN2(I1 = NT2(I) - NT2(I - 1)

 C

 c DO THE SAME FOR THE (YTHER SECTIONS
 C

 IF (NN1(I) *GT. NF .OR. NN2(I) .GT. NF) GOrO 14
 2 CONTINUE

 C

 C CALL SCOUNT SECTION BY SECTION, USING TTEMP(.) TO STORE
 C THE EVENT TIMES TEMPORARILY
 C

 3 FN = 1.0 / FLOAT(NSECT)
 TS = TZERW * FN
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 STATISTICAL ALGORITHMS 219

 KUl = 0

 KU2 = 0

 DO 7 J = 1, NSECT

 KL1 = KUI + 1
 IWl = NT1(J)

 KL2 = KU2 + 1

 KU2 = NT2(J)

 DO 4 I = KLI, KUI

 K = I - KLt + 1

 TTEMP(K) = T1(I)

 4 CONTINUE

 C

 C CALL SCOUNT WITH NW = 1 TO (BTAIN THE NORMALISED PERIODOGRAM

 C AND THE SUM OF SINES AND COSINES FOR SECTION J OF SERIES 1

 C

 CALL SC(IJNT(NN1(J), TS, NF, 1, TTEMP, SPC1, FREQ, Cl, Si, IFAULT)

 IF (IFAULT *NE. 0) RETURN

 DO 5 I = KI2, KU2
 K = I - KI2 + 1

 TTEMP(K) = T2(I)

 5 CONTINUE

 C

 C DO THE SAME FOR SERIES 2
 C

 CALL SCOUNT(NN2(J), TS, NF, 1, TTEMP, SPC2, FREQ, C2, S2, IFAULT)

 IF (IFAULT .NE. 0) RETURN

 SQNN = 1.0 / SQRT(FIDAT(NN1(J) * NN2(J)))
 C

 C ACCUMUIATE (OVER THE NSECT SECTIONS) THE SPECTRAL ESTIMATES

 C AT EACH FREQUENCY
 C

 DO 6 I = 1, NF
 SPEC1(I) = SPEC1(I) + SPC1(I)

 SPEC2(I) = SPEC2(I) + SPC2(I)

 COHERE(I) = COHERE(I) + (C1(I) * C2(I) + S1(I) * W2(I)) * SQNN
 PHASE(I) = PHASE(I) + (C2(I) * S1(I) - C1(I) * S2(I)) * SQNN

 6 CONTINUE
 7 CONTINUE

 C

 C NCOI FIND THE SMO(HED ESTIMATES
 C

 Do 8 I = 1, NF
 SPEC1(I) = SPEC1(I) * FN

 SPEC2(I) = SPEC2(I) * FN
 TEMP = COHERE(I)

 COHERE(I) = 4.0 * FN * FN * (TEMP * TEMP PHASE(I) * PASE(I))
 * / (SPEC1(I) * SPEC2(I))
 PHASE(I) = ATAN2(PHASE(I), TEMP)

 8 CONTINUE

 R3TURN

 9 IFAULT = 7
 RIETURN

 10 IFAULT = 8

 RETURN

 11 IFAULT = 9

 RETURN

 12 IFAULT = 10

 RETURN

 13 IFAULT = 11
 RETURN

 14 IFAULT = 12
 RETURN

 END

 C

 SUBROUTINE SPLIT(NSECT, NEVENT, TZERO, T, NT, TSECT, IFAULT)
 C

 C ALGORITHM AS 1-51.1 APPL. STATIST. (1q80) VOL.29, NO.2
 C

 C SPLITS A PERIO OF OBSERVATION ON A POINT PROCESS INTO
 C NONOVERIAPPING SECTIONS OF E3QUAL LENGTH AND COMPUTES
 C THE EVENT TIMES RELATIVE TO THE SECTION ORIGINS
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 c

 DIMENSION T(NEVENT), TSECT(NSECT)

 INTEGER NT(NSECT)
 IFAULT = 0

 C

 C TEST FOR PARAMER ERRORS

 C

 IF (NSECT .LE. 1 OR. NSECT .GT. NEVENT) GarJO 7

 IF (TZERO *LE. 0.0) GOTO 8

 IF (T(NEVENT *GT. TZERO) GOTO

 C

 INITIA = NEVENT / NSECT

 JJ = NSECT - 1

 FN = TZERO / FLOAT(NSECT)

 DO 4 I = 1, JJ

 C

 C COMPUTE THE TIMkS AT WHICH THE SECTIONS END
 C

 TSECT(I) = FUIAT(I) * FN
 C

 C AS A STARTING POINT, ASSUME THAT ALL SECTIONS

 C CONTAIN THE SAME NUMBER OF EVENTS

 C

 NT(I) = I * INITIA

 INDEX = NT(I)
 C

 C TEST WHETHER THE FINISHING POINT FOR SECTION I

 C IS TOO SMALL, JUST RIGHT OR TOO HIGH
 C

 IF (T(INDEX) - TSECT(I)) 1, 4, 3

 1 NT(I) = NT(I) + 1

 INDEX = NT(I)

 IF (INDEX .GT. NEVENT) GOTO 2

 IF (T(INDEX) - TSECT(I)) 1, 4, 2

 2 NT(I) = NT(I) - 1
 GOTO 4

 3 NT(I) = NT(I) - 1
 INDEX = NT(I)

 IF (INDEX .LT. 1) G(Y1O 4

 IF (T(INDEX) .GT. TSECT(I) GarO 3
 4 CONTINUE

 NT(NSECT) = NEVENT
 C

 C NT(I) IS NOW EQUAL TO THE TOFAL NUMBER OF EVENTS IN
 C THE FIRST I SECTIONS
 C

 C NOW COQPUTE THE EVENT TIMES RELATIVE TO THE SECTION

 C ORIGINS - FIRST TEST WHEHER SECTION 1 CONTAINS NO EVENTS
 C

 IF (NT(1) *EQ. 0) GO`O 10
 DO 6 I = 2, NSECT
 KK = I - 1

 }. = NT(KK) + 1

 IA = NT(I)
 C

 C TEST WHETHER THIE SECTION CONTAINS NO EVENTS
 C

 IF (LK .GT. LJ) GOTO 10
 DO 5 J = LK, LU

 5 T(J) = T(J) - TSECT(KK)
 6 CoNTINUE

 RETURN

 7 IFAULT = 13
 RETURN

 8 IFAULT = 14
 RETURN

 q IFAULT = 15
 RETURN

 10 IFAULT = 16
 RETURN
 END
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