## WILEY



Algorithm AS 151: Spectral Estimates for Bivariate Counting Processes by Sectioning the Data
Author(s): David M. Charnock
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 29, No. 2 (1980), pp. 214-220

Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2986314
Accessed: 27-06-2016 03:48 UTC

[^0]Wiley, Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Royal Statistical Society. Series C (Applied Statistics)

```
C
C
C
c
c
CNORM =2.0 / FN
    DO 7 I = 1, NF
    7 SPEC(I) = CNORM * (C(I) * C(I) + S(I) * S(I))
    NOW OBTAIN THE SMOOTHED SPECTRAL ESTImATES -
        rEtURN IF WANT ONLY THE PERIODIGRAM
        IF (NW .ER. 1) RETURN
        KU = NF - NW + 1
        L = NW/2
        DO 9 I = 1, KU
        SUM = 0.0
        J = I + NW - 1
        DO 8 K = I, J
        8 SUM = SUM + SPEC(K)
        STORE THE SMOOTHED ESTIMATES AND THE CORRESPONDING
        FREQUENCIES IN THE FIRST (NF - NW + 1) ELEMENTS OF
        SPEC(.) AND FREQ(.)
    SPEC(I) = SUM / FW
        M=I + L
        FREQ(I) = FREQ(M)
    9 CONTINUE
    RETURN
10 IFAULT = 1
    RETURN
11 IFAULT = 2
    RETURN
12 IFAULT = 3
    RETURN
13 IFAULT = 4
    RETURN
14 IFAULT = 5
    RETURN
15 IFAULT = 6
    RETURN
    END
```


## Algorithm AS 151

# Spectral Estimates for Bivariate Counting Processes by Sectioning the Data 

By David M. Charnock<br>Department of Social Sciences, W. A. Institute of Technology, Australia

Keywords : SPECTRUM; COHERENCE; PHASE; BIVARIATE COUNTING PROCESS; TIME-AVERAGE SMOOTHING

Language
ISO Fortran

## Description and Purpose

Given a bivariate point process observed for a period of length $T$, in which $N_{j}$ events occur in process $j(j=1,2)$, the purpose of the subroutines BIVCNTand SPLIT is to compute estimates of the auto-spectra of the two processes and the squared coherence and phase spectra between
the two processes (see, for example, Brillinger, 1972).
The major problem usually encountered in calculating such estimates is that the amount of computing time required is excessive, especially for processes containing large numbers of events. This is because the number of operations involved in calculating the sums of sines and cosines at all frequencies for process $j$ is proportional to $N_{j}^{2}$. One well-known way to reduce the required computing time is to split the period of observation into several sections, compute estimates for each section and obtain smoothed estimates by averaging over the sections (see, for example, Lewis, 1970). If $k$ sections are used, the number of operations for process $j$ is then proportional to $N_{j}^{2} / k$.

This can give large savings in computation time and is the procedure implemented in BIVCNT and SPLIT: Subroutine SPLIT takes the event times in a univariate point process, divides the total period of observation into nonoverlapping sections of equal length and computes the event times relative to the sections. Subroutine BIVCNT calls SPLIT for both marginal processes in a bivariate point process and uses the resulting event times to compute smoothed estimates of the auto-spectra, coherence and phase spectra.

More precisely, suppose that $k$ sections are used, that the event times relative to the sections in process $j$ are $t_{j}^{\prime}(r),\left(j=1,2 ; r=1,2, \ldots, N_{j}\right)$, that the index number of the last event in section $l$ of process $j$ is $b_{j}(l)$ and that $n_{j}(l)=b_{j}(l)-b_{j}(l-1)$, i.e. $n_{j}(l)$ is the number of events in section $l$ of process $j(j=1,2 ; l=1,2, \ldots, k)$.

Writing $\omega_{p}=2 \pi p k / T$, let

$$
\begin{gathered}
C_{j l}\left(\omega_{p}\right)=\sum_{r=b_{j}(l-1)+1}^{b_{j}(l)} \cos \left(\omega_{p} t_{j}^{\prime}(r)\right) \\
S_{j l}\left(\omega_{p}\right)=\sum_{r=b_{j}(l-1)+1}^{b_{j}(l)} \sin \left(\omega_{p} t_{j}^{\prime}(r)\right) \\
A\left(\omega_{p}\right)=\sum_{l=1}^{k}\left\{C_{1 l}\left(\omega_{p}\right) C_{2 l}\left(\omega_{p}\right)+S_{1 l}\left(\omega_{p}\right) S_{2 l}\left(\omega_{p}\right)\right\} /\left(n_{1}(l) n_{2}(l)\right)^{\frac{1}{2}}
\end{gathered}
$$

and

$$
B\left(\omega_{p}\right)=\sum_{l=1}^{k}\left\{C_{2 l}\left(\omega_{p}\right) S_{1 l}\left(\omega_{p}\right)-C_{1 l}\left(\omega_{p}\right) S_{2 l}\left(\omega_{p}\right)\right\} /\left(n_{1}(l) n_{2}(l)\right)^{\frac{1}{2}}
$$

By calling the subroutine $S C O U N T$ for each section, BIVCNT computes the auto-spectral estimates

$$
\hat{g}_{j}\left(\omega_{p}\right)=\frac{2}{k} \sum_{l=1}^{k} \frac{C^{2}{ }_{j l}\left(\omega_{p}\right)+S_{j l}^{2}\left(\omega_{p}\right)}{n_{j}(l)}, \quad j=1,2,
$$

the squared coherence estimate

$$
\hat{\kappa}_{12}^{2}\left(\omega_{p}\right)=4\left(A^{2}\left(\omega_{p}\right)+B^{2}\left(\omega_{p}\right)\right) /\left(k^{2} \hat{g}_{1}\left(\omega_{p}\right) \hat{g}_{2}\left(\omega_{p}\right)\right)
$$

and the phase estimate

$$
\hat{\Phi}_{12}\left(\omega_{p}\right)=\arctan \left(B\left(\omega_{p}\right) / A\left(\omega_{p}\right)\right)
$$

each for $p=1,2, \ldots, N F$.

## Structure

SUBROUTINE BIVCNT(N1, N2, TZERO, NSECT, T1, T2, NF, TTEMP, SPC1, SPC2, C1, S1, C2, S2, NT1, NT2, NN1, NN2, SPEC1, SPEC2, COHERE, PHASE, FREQ, IFAULT)
Formal parameters
N1 Integer
N2 Integer
input : the number of events in process 1
input : the number of events in process 2

| TZERO | Real |
| :---: | :---: |
| NSECT | Integer |
| $T 1$ | Real array ( $N 1$ ) |
| T2 | Real array (N2) |
| $N F$ | Integer |
| TTEMP | Real array (NF) |
| SPC1 | Real array (NF) |
| SPC2 | Real array (NF) |
| C1 | Real array ( $N F$ ) |
| S1 | Real array ( $N F$ ) |
| C2 | Real array (NF) |
| S2 | Real array (NF) |
| $N T 1$ | Integer array (NSECT) |
| $N T 2$ | Integer array (NSECT) |
| NN1 | Integer array (NSECT) |
| NN2 | Integer array (NSECT) |
| SPEC1 | Real array (NF) |
| SPEC2 | Real array (NF) |
| COHERE | Real array (NF) |
| PHASE | Real array ( $N F$ ) |
| FREQ | Real array (NF) |
| $I F A U L T$ | Integer |

input : the length of the period of observation input: the number of sections used
input: the event times in process 1
output: the event times in process 1 relative to the sections
input : the event times in process 2
output: the event times in process 2 relative to the sections
input : the number of frequencies at which the estimates are computed
workspace : used in the calls to SPLIT and SCOUNT
workspace : used in the calls to SCOUNT
output : the index numbers of the last event in each section of process 1
output : the index numbers of the last event in each section of process 2
output : the numbers of events in each section of process 1
output: the numbers of events in each section of process 2
output: the smoothed estimates of the autospectrum of process 1
output: the smoothed estimates of the autospectrum of process 2
output : the smoothed estimates of the squared coherence spectrum
output : the smoothed estimates of the phase spectrum
output: the frequencies at which the estimates are computed
output : a fault indicator, equal to :
7 if $T Z E R O \leqslant 0$;
8 if $N 1$ or $N 2 \leqslant 0$;
9 if $T 1(N 1)$ or $T 2(N 2)>T Z E R O$;
10 if $N S E C T \leqslant 0$;
11 if $N F<N S E C T$;
12 if the number of events in any section of either process is greater than $N F$; values between 1 and 6 can result from errors in SCOUNT; 0 otherwise

SU BROUTINE SPLIT (NSECT, NEVENT, TZERO, T, NT, TSECT, IFAULT)
Formal parameters
NSECT Integer
NEVENT Integer
TZERO Real
input: the number of sections used
input : the total number of events
input : the length of the period of observation

| $T$ | Real array (NEVENT) | input : the event occurrence times |
| :---: | :---: | :---: |
|  |  | output : the event times relative to the sections |
| $N T$ | Integer array (NSECT) | output: the index numbers of the last event in each section |
| TSECT | Real array (NSECT) | output : the times at which the sections end |
| IFAULT | Integer | output : a fault indicator, equal to : |
|  |  | 13 if $N S E C T \leqslant 1$ or $>$ NEVENT; |
|  |  | 14 if $T Z E R O \leqslant 0$; |
|  |  | 15 if T(NEVENT) > TZERO; |
|  |  | 16 if any section contains no events |

## Auxiliary algorithm

BIVCNT uses the subroutine SCOUNT of algorithm AS 150 (Charnock, 1980).

## Time and Accuracy

As already observed, the time required increases in proportion to the square of the numbers of events in the two processes but is inversely proportional to the number of sections used. It will also depend on the value chosen for the constant $N R E C U R$ in the auxiliary algorithm SCOUNT. Table 1 gives timings (on a DEC-10 computer) for BIVCNT with NRECUR $=100$ when both processes contain the same number of events. With large values (around 100) of $N R E C U R$ the phase estimates at frequencies with very low coherency values have been found to be accurate to only one significant figure. However, this is not a serious problem because the phase estimates are of little use when the coherency is very low.

Table 1
Timings (in seconds) for BIVCNT on a DEC-10

|  | Number of events in each process |  |  |  |
| :---: | ---: | ---: | ---: | ---: |
| Number of sections | 208 | 1000 | 2000 | 4000 |
| 1 | 6.35 | $125 \cdot 43$ | $494 \cdot 86$ |  |
| 5 | 1.61 | 26.17 | 100.39 | $396 \cdot 24$ |
| 10 | 1.44 | 13.72 | 51.66 | 199.85 |
| 20 |  | 7.48 | 26.89 | 101.13 |

## Restriction

The size of the array TTEMP has been set equal to $N F$. This is a fairly arbitrary value : in fact, TTEMP must be large enough to store the event times section by section for each process. Since the user will normally set $N F$ to a value somewhat greater than $\max (N 1, N 2) / N S E C T$, i.e. the mean number of events per section in the process with the larger number of events, this value for the size of TTEMP should be large enough for most analyses. If, however, the error condition IF AULT $=12$ occurs then TTEMP should be DIMENSIONed to a larger size than $N F$.

## Acknowledgements

I am grateful to the editor and referee for several suggestions which helped to improve the quality of the coding.

## References

Brillinger, D. R. (1972). The spectral analysis of stationary interval functions. Proc. Sixth Berkeley Symp. Math. Stat. and Prob., 1, 485-513.
Gharnock, D. M. (1980). Algorithm AS 150. Spectrum estimate for a counting process. Appl. Statist., 29, 211-214. Lewis, P. A. W. (1970). Remarks on the theory, computation and application of the spectral analysis of series of events. J. Sound and Vib., 12, 353-375.

SUBROUTINE BIVCNT(N1, N2, TZERD, NSECT, T1, T2, NF, TTEMP, SPC1,

* SPC2, C1, S1, C2, S2, NT1, NT2, NN1, NN2, SPEC1, SPEC2, COHERE,
* PHASE, FREQ, IFAULT)

```
DO 2I = 2, NSECT
NN1(I) = NT1(I) - NT1(I - 1)
NN2(I) =NT2(I) - NT2(I - 1)
```

IF (NN1 (1) .GT. NF .OR. NN2 (1) .GT. NF) GOTO 14

DO THE SAME FUR THE OTHER SECTIUNS

```
    IF (NN1(I) .GT. NF .OR. NN2(I) .GT. NF) GOTO 14
```

    2 CONTINUE
    CALL SCOUNT SECTIUN BY SECTION, USING TTEMP(.) TO STORE THE EVENT TIMES TEMPGRARILY

```
3 FN = 1.0 / FLOAT(NSECT)
    TS = TZERO * FN
```

```
        KU1 = 0
        KU2 = O
        DO 7 J = 1, NSECT
        KLI = KU1 + 1
        KU1 = NT1(J)
        K12 = KU2 + 1
        KU2 = NT2(J)
        DO 4 I = KLI, KU1
        K=I - KLI + I
        TTEMP(K) = T1(1)
        4 continue
```

        DO \(6 I=1\), NF
        \(\operatorname{SPEC1}(\mathrm{I})=\operatorname{SPEC1}(\mathrm{I})+\operatorname{SPC1}(\mathrm{I})\)
        \(\operatorname{SPEC2}(I)=\operatorname{SPEC2}(I)+\operatorname{SPC2}(I)\)
        \(\operatorname{COHERE}(I)=\operatorname{COHERE}(I)+(C 1(I) * C 2(I)+S 1(I) * S 2(I)) * S Q N N\)
        \(\operatorname{PHASE}(I)=\operatorname{PHASIS}(I)+(C 2(I) * S 1(I)-C 1(I) * S 2(I)) *\) SQNN
        6 CONTINUE
        7 CONTINUE
            NOW FIND THE SMOOTHED ESTIMATES
        DO \(8 \mathrm{I}=1\), NF
        \(\operatorname{SPEC1}(\mathrm{I})=\operatorname{SPEC1}(\mathrm{I}) * \mathrm{FN}\)
        \(\operatorname{SPEC} 2(I)=\operatorname{SPEC} 2(I) *\) FN
        TEMP = COHERE (I)
        \(\operatorname{COHERE}(I)=4.0 *\) FN \(*\) FN * (TENP * TEMP \(+\operatorname{PHASE}(I) * \operatorname{PHASE}(I))\)
        * / (SPEC1 (I) * SPEC2 (I))
        \(\operatorname{PHASE}(I)=\operatorname{ATAN} 2(\operatorname{PHASE}(I), \operatorname{TEMP})\)
        8 CONTINUE
        RETURN
    9 IFAULT \(=7\)
        RETURN
        10 IFAULT \(=8\)
        RETURN
    11 IFAUYT \(=0\)
        RETURN
    12 IFAULT \(=10\)
        RETURN
    13 IFAULT \(=11\)
    RETURN
    14 IFAULT \(=12\)
        RETURN
        END
    SUBROUTINE SPLIT(NSECT, NEVENT, TZERO, T, NT, TSECT, IFAULT)
    C
C AIGORITHM AS 151.1 APPL. STATIST. (1080) VOL.29, NO. 2
C
C
C
C

CALL SCOUNT WITH NW = 1 TO CBTAIN TIE NORMALISED PERIODUGRAM AND THE SUM OF SINES AND COSINES FOR SECTION J OF SERIES 1

CALL SCOUNT(NN1 (J), TS, NF, 1, TTEMP, SPC1, FREX, C1, S1, IFAULT)
IF (IFAULT .NE. O) RETURN
DO $5 \mathrm{I}=\mathrm{KL} 2$, KU2
$K=1-K 12+1$
$\operatorname{TTEMP}(K)=T 2(I)$
5 CONTINUE
DO THE SAME FOR SERIES 2
CALL SCOUNT(NN2(J), TS, NF, 1, TTEMP, SPC2, FREQ, C2, S2, IFAULT)
IF (IFAULT .NE. O) RETURN
SQNN $=1.0 / \operatorname{SQRT}(F L D A T(N N 1(J) * N N 2(J)))$
ACCUMULATE (OVER THE NSECT SECTIONS) THE SPECTRAL ESTIMATES AT EACH FREQUENCY

DO $6 \mathrm{I}=1$, NF
$\operatorname{SPEC1}(\mathrm{I})=\operatorname{SPEC1}(\mathrm{I})+\operatorname{SPC1}(\mathrm{I})$
$\operatorname{SPEC2}(I)=\operatorname{SPEC2}(I)+\operatorname{SPC2}(I)$
COHERE (I) $=$ COHERE(I) $+(C 1(I) * C 2(I)+S 1(I) * S 2(I)) *$ SQNN
PHASE (I) $=\operatorname{PHASE}(I)+(C 2(I) * S 1(I)-C 1(I) * S 2(I)) *$ SQNN
7 CONTINUE
C
C
NOW FIND THE SMOOTHED ESTIMATES
DO $8 \mathrm{I}=1$, NF
$\operatorname{SPEC1}(\mathrm{I})=\operatorname{SPEC1}(\mathrm{I}) * \mathrm{FN}$
C2 (I) $=$ SPEC2(I) * FN
COHERE (I) $=4.0 *$ FN * FN * (TEMP * TENP + PHASE (I) * PHASE (I))

* / (SPEC1 (I) * SPEC2 (I))
$=$ ATAN2(PHASE(I), TEMP)
RETURN
9 IFAULT $=7$ RETURN
10 IFAULT $=8$ RETURN
11 IFAULT $=9$ RETURN
12 IFAULT $=10$ RETURN
13 IFAULT $=11$ RETURN
14 IFAULT $=12$ RETURN
END
SUBROUTINE SPLIT(NSECT, NEVENT, TZERO, T, NT, TSECT, IFAULT)
ALGORITHM AS 151.1 APPL. STATIST. (1980) VOL. 29 , NO. 2
SPLITS A PERIOD OF OBSERVATION ON A POINT PROCESS INTO NONOVERLAPPING SECTIONS OF BQUAL LENGTH AND COMPUTES THEE EVENT TIMES RELATIVE TO THE SECTION ORIGINS

```
C
    DIMENSION T(NEVIENT), TSECT(NSECT)
    INTEGER NT(NSECT)
    IFAULT = 0
        TEST FOR PARAMETER ERRORS
    IF (NSECT .IE. 1 .OR. NSECT .GT. NEVENT) GOTO 7
    IF (TZERO .LE. O.O) GOTO 8
    IF (T(NEVENT) .GT. TZERO) GOTO O
    INITIA = NEVIENT / NSECT
        JJ = NSECT - 1
        FN = TZERU / FLOAT(NSECT)
        DO 4I = 1, JJ
        COMPUTE THE TIMES AT WHICH THE SECTIONS END
        TSECT(I) = FLJAT(I) * FN
        AS A STARTING POINT, ASSUME THAT ALL SECTIONS
        CONTAIN THE SAME NUMBER OF EVENTS
        NT(I) = I * INITIA
        INDEX = NT(I)
            TEST WHETHER THE FINISHING POINT FOR SECTION I
        IS TOO SMALL, JUST RIGHT OR TOU HIGH
        IF (T(INDEX) - TSECT(I)) 1, 4, 3
        1 NT(I) = NT(I) + 1
    INDEX = NT(I)
    IF (INDEX .GT. NEVENTT) GOTRO 2
    IF (T(INDEX) - TSECT(I)) 1, 4, 2
    2NT(I) = NT(I) - 1
    GOTO 4
    3NT(I)=NT(I) - 1
    INDEX = NT(I)
    IF (INDEX .LT. 1) GOTO }
    IF (T(INDEX) .GT. TSECT(I)) GOTO 3
    4 CONTINUE
    NT(NSECT) = NEVENT
C
C NT(I) IS NOW EQUAL TO THE TOTAL NUMBER OF EVENTS IN
C
C
C
            THE FIRST I SECTIONS
            NOW COMPUTE THE EVENT TIMES RELATIVE TO THE SECTION
            ORIGINS - FIRST TEST WHETHER SECTION 1 CONTAINS NO EVENTS
        IF (NT(1).EQ. 0) GOTOO 10
        DO 6I = 2, NSECT
        KK=I-1
        LK=NT(KK) +1
        LW = NT(I)
            TEST WHETHER THE SECTION CONTAINS NO EVENTS
        IF (LK .GT. W) GOOTO 10
    DO 5 J = LK, LU
    5T(J) = T(J) - TSECT(KK)
    6 \text { CONTINUE}
        RETURN
    7 IFAULT = 13
        RETURN
    8 IFAULT = 14
        RETURN
    9 IFAULT = }1
    RETURN
10 IFAULT = 16
    RETURN
    END
```


[^0]:    Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://about.jstor.org/terms

    JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

